This is a scientific web page about the two-dimensional steady incompressible flow in a driven cavity. The steady incompressible 2-D Navier-Stokes equations are solved numerically. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. This is a scientific web page about the two-dimensional steady incompressible flow in a driven cavity. The steady incompressible 2-D Navier-Stokes equations are solved numerically. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations.

Effect of Blockage Ratio on
Flow Around a Square Cylinder
Confined in a Channel

 

In this study, the effect of the blockage ratio on the steady incompressible viscous flow past a square cylinder confined in a channel is investigated numerically. In terms of the channel height with respect to the length of the square cylinder 1/4, 1/6, 1/8 and 1/10 blockage ratios are considered. For each of the considered blockage ratio the flow past a square cylinder confined in a channel is simulated up to very high Reynolds numbers. The numerical solutions of different channel blockage ratios are compared with each other and detailed results are presented.

 

 

 
 

www.cavityflow.com