References

 

[1]
M. Aydin and R. T. Fenner, Boundary Element Analysis of Driven Cavity Flow for Low and Moderate Reynolds Numbers, International Journal for Numerical Methods in Fluids, 37 (2001), 45-64. 
 
[2]
A. S. Benjamin and V. E. Denny, On the Convergence of Numerical Solutions for 2-D Flows in a Cavity at Large Re, Journal of Computational Physics 33 (1979), 340-358. 
 
[3]
E. Brakkee, P. Wesseling and C. G. M. Kassels, Schwarz Domain Decomposition for the Incompressible Navier–Stokes Equations in General Co-ordinates, International Journal for Numerical Methods in Fluids 32, (2000) 141-173. 
 
[4]
O. Botella and R. Peyret, Benchmark Spectral Results on the Lid-Driven Cavity Flow, Computers and Fluids 27, (1998) 421-433. 
 
[5]
I. Demirdzic, Z. Lilek and M. Peric, Fluid Flow and Heat Transfer Test Problems for Non-orthogonal Grids: Bench-mark Solutions, International Journal for Numerical Methods in Fluids 15, (1992) 329-354. 
 
[6]
E. Erturk, T. C. Corke and C. Gokcol, Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers, International Journal for Numerical Methods in Fluids 48, (2005) 747-774. 
 
[7]
E. Erturk and C. Gokcol, Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers, International Journal for Numerical Methods in Fluids 50, (2006) 421-436. 
 
[8]
E. Erturk, O. M. Haddad and T. C. Corke, Numerical Solutions of Laminar Incompressible Flow Past Parabolic Bodies at Angles of Attack, AIAA Journal 42, (2004) 2254-2265. 
 
[9]
M. M. Gupta, R. P. Manohar and B. Noble, Nature of Viscous Flows Near Sharp Corners, Computers and Fluids 9, (1981) 379-388. 
 
[10]
H. Huang and B. R. Wetton, Discrete Compatibility in Finite Difference Methods for Viscous Incompressible Fluid Flow, Journal of Computational Physics 126, (1996) 468-478. 
 
[11]
H. Lai and Y. Y. Yan, The Effect of Choosing Dependent Variables and Cellface Velocities on Convergence of the SIMPLE Algorithm Using Non-Orthogonal Grids, International Journal of Numerical Methods for Heat & Fluid Flow 11, (2001) 524-546. 
 
[12]
M. Li, T. Tang and B. Fornberg, A Compact Forth-Order Finite Difference Scheme for the Steady Incompressible Navier-Stokes Equations International Journal for Numerical Methods in Fluids 20, (1995) 1137-1151. 
 
[13]
M. Louaked, L. Hanich and K. D. Nguyen, An Efficient Finite Difference Technique For Computing Incompressible Viscous Flows, International Journal for Numerical Methods in Fluids 25, (1997) 1057-1082. 
 
[14]
H. K. Moffatt, Viscous and resistive eddies near a sharp corner, Journal of Fluid Mechanics 18, (1963) 1-18. 
 
[15]
M. Napolitano, G. Pascazio and L. Quartapelle, A Review of Vorticity Conditions in the Numerical Solution of the z-y Equations, Computers and Fluids 28, (1999) 139-185. 
 
[16]
H. Nishida and N. Satofuka, Higher-Order Solutions of Square Driven Cavity Flow Using a Variable-Order Multi-Grid Method, International Journal for Numerical Methods in Fluids 34, (1992) 637-653. 
 
[17]
C. W. Oosterlee, P. Wesseling, A. Segal and E. Brakkee, Benchmark Solutions for the Incompressible Navier-Stokes Equations in General Co-ordinates on Staggered Grids, International Journal for Numerical Methods in Fluids 17, (1993) 301-321. 
 
[18]
J. R. Pacheco and R. E. Peck, Nonstaggered Boundary-Fitted Coordinate Method For Free Surface Flows, Numerical Heat Transfer Part B 37, (2000) 267-291. 
 
[19]
M. Peric, Analysis of Pressure-Velocity Coupling on Non-orthogonal Grids, Numerical Heat Transfer Part B 17, (1990) 63-82. 
 
[20]
D. G. Roychowdhury, S. K. Das and T. Sundararajan, An Efficient Solution Method for Incompressible N-S Equations Using Non-Orthogonal Collocated Grid, International Journal for Numerical Methods in Engineering 45, (1999) 741-763. 
 
[21]
R. Schreiber and H. B. Keller, Driven Cavity Flows by Efficient Numerical Techniques, Journal of Computational Physics 49, (1983) 310-333. 
 
[22]
A. Shklyar and A. Arbel, Numerical Method for Calculation of the Incompressible Flow in General Curvilinear Co-ordinates With Double Staggered Grid, International Journal for Numerical Methods in Fluids 41, (2003) 1273-1294. 
 
[23]
W. F. Spotz, Accuracy and Performance of Numerical Wall Boundary Conditions for Steady 2D Incompressible Streamfunction Vorticity, International Journal for Numerical Methods in Fluids 28, (1998) 737-757. 
 
[24]
T. Stortkuhl, C. Zenger and S. Zimmer, An Asymptotic Solution for the Singularity at the Angular Point of the Lid Driven Cavity, International Journal of Numerical Methods for Heat & Fluid Flow 4, (1994) 47-59. 
 
[25]
R. Teigland and I. K. Eliassen, A Multiblock/Multilevel Mesh Refinement Procedure for CFD Computations, International Journal for Numerical Methods in Fluids 36, (2001) 519-538. 
 
[26]
A. Thom, The Flow Past Circular Cylinders at Low Speed, Proceedings of the Royal Society of London Series A 141, (1933) 651-669. 
 
[27]
P. G. Tucker and Z. Pan, A Cartesian Cut Cell Method for Incompressible Viscous Flow, Applied Mathematical Modelling 24, (2000) 591-606. 
 
[28]
Y. Wang and S. Komori, On the Improvement of the SIMPLE-Like method for Flows with Complex Geometry, Heat and Mass Transfer 36, (2000) 71-78. 
 
[29]
E. Weinan and L. Jian-Guo, Vorticity Boundary Condition and Related Issues for Finite Difference Schemes, Journal of Computational Physics 124, (1996) 368-382. 
 
[30]
N. G. Wright and P. H. Gaskell, An Efficient Multigrid Approach to Solving Highly Recirculating Flows, Computers and Fluids 24, (1995) 63-79. 
 
[31]
H. Xu and C. Zhang, Study Of The Effect Of The Non-Orthogonality For Non-Staggered Grids - The Results, International Journal for Numerical Methods in Fluids 29, (1999) 625-644. 
 
[32]
H. Xu and C. Zhang, Numerical Calculation of Laminar Flows Using Contravariant Velocity Fluxes, Computers and Fluids 29, (2000) 149-177.