References

 

1.       Barragy E. and Carey G.F. (1997), “Stream function-vorticity driven cavity solutions using p finite elements”, Computers and Fluids, Vol. 26, pp. 453-468.

 

2.       Batchelor G.K. (1956), “On steady laminar flow with closed streamlines at large Reynolds numbers”, Journal of Fluid Mechanics, Vol. 1, pp. 177-190.

 

3.       Benjamin A.S. and Denny V.E. (1979), “On the convergence of numerical solutions for 2-D flows in a cavity at large Re”, Journal of Computational Physics,  Vol. 33, pp. 340-358.

 

4.       Botella O. and Peyret R. (1998), “Benchmark spectral results on the lid-driven cavity flow”, Computers and Fluids, Vol. 27, pp. 421-433.

 

5.       Burggraf O.R. (1966), “Analytical and numerical studies of the structure of steady separated flows”, Journal of Fluid Mechanics, Vol. 24, pp. 113-151.

 

6.       Erturk E., Corke T.C. and Gokcol C. (2005), “Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers”, International Journal for Numerical Methods in Fluids, Accepted for publication.

 

7.       Erturk E. (2005), “Nature of driven cavity flow at high-Re and benchmark solutions on fine grid mesh”, International Journal for Numerical Methods in Fluids, Submitted for publication.

 

8.       Erturk E. and Gokcol C. (2005), “Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers”, International Journal for Numerical Methods in Fluids, Submitted for publication.

 

9.       Gaskell P.H., Thompson H.M. and Savage M.D. (1999), “A finite element analysis of steady viscous flow in triangular cavities”, Proceedings Of The Institution Of Mechanical Engineers Part C-Journal Of Mechanical Engineering Science, Vol. 213, pp. 263-276.

 

10.     Ghia U., Ghia K.N. and Shin C.T. (1982), “High-Re solutions for incompressible flow using the navier-stokes equations and a multigrid method”, Journal of Computational Physics, Vol. 48, pp. 387-411.

 

11.     Huang H. and Wetton B.R. (1996), “Discrete compatibility in finite difference methods for viscous incompressible fluid flow”,  Journal of Computational Physics, Vol. 126, pp. 468-478.

 

12.     Jyosna R. and Vanka S.P. (1995), “Multigrid calculation of steady, viscous flow in a triangular cavity”, Journal of Computational Physics., Vol. 122, pp. 107-117.

 

13.     Li M., Tang T. and Fornberg B. (1995), “A compact forth-order finite difference scheme for the steady incompressible Navier-Stokes equations”, International Journal for Numerical Methods in Fluids, Vol. 20, pp. 1137-1151.

 

14.     Li M. and Tang T. (1996), “Steady viscous flow in a triangular cavity by efficient numerical techniques”, Computers & Mathematics With Applications, Vol. 31, pp. 55-65.

 

15.     McQuain W.D., Ribbens C.J., Wang C-Y and Watson L.T (1994), “Steady viscous flow in a trapezoidal cavity”, Computers and Fluids, Vol. 23, pp. 613-626.

 

16.     Moffatt H.K. (1963), “Viscous and resistive eddies near a sharp corner”, Journal of Fluid Mechanics, Vol. 18, pp. 1-18.

 

17.     Napolitano M., Pascazio G. and Quartapelle L. (1999), “A review of vorticity conditions in the numerical solution of the  equations. Computers and Fluids, Vol. 28, pp. 139-185.

 

18.     Ribbens C.J., Watson L.T and Wang C-Y (1994), “Steady viscous flow in a triangular cavity”, Journal of Computational Physics, Vol. 112, pp. 173-181.

 

19.     Rubin S.G. and Khosla P.K. (1981), “Navier-Stokes calculations with a coupled strongly implicit method”, Computers and Fluids, Vol. 9, pp. 163-180.

 

20.     Spotz W.F. (1998), “Accuracy and Performance of Numerical Wall Boundary Conditions for Steady 2D Incompressible Streamfunction Vorticity”, International Journal for Numerical Methods in Fluids, Vol. 28, pp. 737-757.

 

21.     Weinan E. and Jian-Guo L. (1996), “Vorticity Boundary Condition and Related Issues for Finite Difference Schemes”, Journal of Computational Physics, Vol. 124, pp. 368-382.

 

22.     Tennehill J.C., Anderson D.A. and Pletcher R.H. (1997), Computational Fluid Mechanics and Heat Transfer (2nd edn), Taylor & Francis: London.