References

 

[1]
Abouhamza, A., Pierre, R., 2003. A Neutral Stability Curve for Incompressible Flows in a Rectangular Driven Cavity. Mathematical and Computer Modelling 38, 141-157.

[2]
Albensoeder, S., Kuhlmann, H.C., Rath, H.J., 2001. Three-dimensional centrifugal-flow instabilities in the lid-driven cavity problem. Physics of Fluids 13, 121-135.

[3]
Albensoeder, S., Kuhlmann, H.C., 2005. Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics 206, 536-558.

[4]
Auteri, F., Parolini, N., Quartapelle, L., 2002. Numerical Investigation on the Stability of Singular Driven Cavity Flow. Journal of Computational Physics 183, 1-25.

[5]
Aydin, M., Fenner, R.T., 2001. Boundary Element Analysis of Driven Cavity Flow for Low and Moderate Reynolds Numbers. International Journal for Numerical Methods in Fluids 37, 45-64.

[6]
Barragy, E., Carey, G.F., 1997. Stream Function-Vorticity Driven Cavity Solutions Using p Finite Elements. Computers and Fluids 26, 453-468.

[7]
Batchelor, G.K., 1956. On Steady Laminar Flow with Closed Streamlines at Large Reynolds Numbers. Journal of Fluid Mechanics 1, 177-190.

[8]
Benjamin, A.S., Denny, V.E., 1979. On the Convergence of Numerical Solutions for 2-D Flows in a Cavity at Large Re. Journal of Computational Physics 33, 340-358.

[9]
Burggraf, O.R., 1966. Analytical and Numerical Studies of the Structure of Steady Separated Flows. Journal Fluid Mechanics 24, 113-151.

[10]
Cazemier, W., Verstappen, R.W.C.P., Veldman, A.E.P., 1998. Proper Orthogonal Decomposition and Low-Dimensional Models for the Driven Cavity Flows. Physics of Fluids 10, 1685-1699.

[11]
Dennis, S.C.R., Chang, G-Z., 1970. Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100. Journal Fluid Mechanics 42, 471-489.

[12]
Ding, Y., Kawahara, M., 1998. Linear Stability of Incompressible Fluid Flow in a Cavity Using Finite Element Method. International Journal for Numerical Methods in Fluids 27, 139-157.

[13]
Drazin, P.G., Reid, W.H., 1991. Hydrodynamic Stability. Cambridge University Press.

[14]
Erturk, E., Corke, T.C., Gokcol, C., 2005. Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers. International Journal for Numerical Methods in Fluids 48, 747-774.

[15]
Erturk, E., Gokcol, C., 2006. Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers. International Journal for Numerical Methods in Fluids 50, 421-436.

[16]
Erturk, E., Corke, T.C., 2001. Boundary Layer Leading-Edge Receptivity to Sound at Incidence Angles. Journal Fluid Mechanics 444, 383-407.

[17]
Erturk, E., Haddad, O.M., Corke, T.C., 2004. Numerical Solutions of Laminar Incompressible Flow Past Parabolic Bodies at Angles of Attack. AIAA Journal 42, 2254-2265.

[18]
Fletcher, C.A.J., 1991. Computational Techniques for Fluid Dynamics (2nd edn.). Springer-Verlag.

[19]
Fornberg, B., 1980. A Numerical Study of Steady Viscous Flow Past a Circular Cylinder. Journal Fluid Mechanics 98, 819-855.

[20]
Fornberg, B., 1985. Steady viscous ow past a circular cylinder up to Reynolds number 600. Journal of Computational Physics 61, 297-320.

[21]
Fortin, A., Jardak, M., Gervais, J.J., Pierre, R., 1997. Localization of Hopf Bifurcations in Fluid Flow Problems. International Journal for Numerical Methods in Fluids 24, 1185-1210.

[22]
Gervais, J.J., Lemelin, D., Pierre, R., 1997. Some Experiments with Stability Analysis of Discrete Incompressible Flows in the Lid-Driven Cavity. International Journal for Numerical Methods in Fluids 24, 477-492.

[23]
Ghia, U., Ghia, K.N., Shin, C.T., 1982. High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics 48, 387-411.

[24]
Goyon, O., 1996. High-Reynolds Number Solutions of Navier-Stokes Equations Using Incremental Unknowns. Computer Methods in Applied Mechanics and Engineering 130, 319-335.

[25]
Haddad, O.M., Corke, T.C., 1998. Boundary layer receptivity to free-stream sound on parabolic bodies. Journal Fluid Mechanics 368, 1-26.

[26]
Kim, J., Moin, P., 1985. Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations. Journal of Computational Physics 59, 308-323.

[27]
Koseff, J.R., Street, R.L., 1984. The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations. ASME Journal of Fluids Engineering 106, 390-398.

[28]
Koseff, J.R., Street, R.L., 1984. On End Wall Effects in a Lid Driven Cavity Flow. ASME Journal of Fluids Engineering 106, 385-389.

[29]
Koseff, J.R., Street, R.L., 1984. Visualization Studies of a Shear Driven Three-Dimensional Recirculating Flow. ASME Journal of Fluids Engineering 106, 21-29.

[30]
Liao, S.J., Zhu, J.M., 1996. A Short Note on Higher-Order Stremfunction-Vorticity Formulation of 2-D Steady State Navier-Stokes Equations. International Journal for Numerical Methods in Fluids 22, 1-9.

[31]
Liffman, K., 1996. Comments on a Collocation Spectral Solver for the Helmholtz Equation. Journal of Computational Physics 128, 254-258.

[32]
Peng, Y-H., Shiau, Y-H., Hwang, R.R., 2003. Transition in a 2-D Lid-Driven Cavity Flow. Computers and Fluids 32, 337-352.

[33]
Peregrine, D.H., 1985. A Note on the Steady High-Reynolds-Number Flow About a Circular Cylinder. Journal Fluid Mechanics 157, 493-500.

[34]
Poliashenko, M., Aidun, C.K., 1995. A Direct Method for Computation of Simple Bifurcations. Journal of Computational Physics 121, 246-260.

[35]
Prasad, A.K., Koseff, J.R., 1989. Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow. Physics of Fluids A 1, 208-218.

[36]
Ramanan, N., Homsy, G.M., 1994. Linear Stability of Lid-Driven Cavity Flow. Physics of Fluids 6, 2690-2701.

[37]
Sahin, M., Owens, R.G., 2003. A Novel Fully-Implicit Finite Volume Method Applied to the Lid-Driven Cavity Flow Problem. Part II. Linear Stability Analysis. International Journal for Numerical Methods in Fluids 42, 79-88.

[38]
Schlichting, H., Gersten, K., 2000. Boundary Layer Theory (8th revised and enlarged edn.). Springer.

[39]
Schreiber, R., Keller, H.B., 1983. Driven Cavity Flows by Efficient Numerical Techniques. Journal of Computational Physics 49, 310-333.

[40]
Shankar, P.N., Deshpande, M.D., 2000. Fluid Mechanics in the Driven Cavity. Annual Review of Fluid Mechanics 32, 93-136.

[41]
Smith, F.T., 1985. A Structure for Laminar Flow Past a Bluff Body at High Reynolds Number. Journal Fluid Mechanics 155, 175-191.

[42]
Son, J.S., Hanratty, T., 1969. Numerical Solution for the Flow Around a Cylinder at Reynolds Numbers of 40, 200 and 500. Journal Fluid Mechanics 35, 369-386.

[43]
Tannehill, J.C., Anderson, D.A., Pletcher, R.H., 1997. Computational Fluid Mechanics and Heat Transfer (2nd edn.). Taylor & Francis.

[44]
Tiesinga, G., Wubs, F.W., Veldman, A.E.P., 2002. Bifurcation Analysis of Incompressible Flow in a Driven Cavity by the Newton-Picard method. Journal of Computational and Applied Methematics 140, 751-772.

[45]
Tuann, S-Y., Olson, M.D., 1978. Numerical Studies of the Flow Around a Circular Cylinder by a Finite Element Method. Computers and Fluids 6, 219-240.

[46]
Wan, D.C., Zhou, Y.C., Wei, G.W., 2002. Numerical Solution of Incompressible Flows by Discrete Singular Convolution. International Journal for Numerical Methods in Fluids 38, 789-810.

[47]
Weinan, E., Jian-Guo, L., 1996. Vorticity Boundary Condition and Related Issues for Finite Difference Schemes. Journal of Computational Physics 124, 368-382.