This is a scientific web page about the two-dimensional steady incompressible flow in a driven cavity. The steady incompressible 2-D Navier-Stokes equations are solved numerically. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. This is a scientific web page about the two-dimensional steady incompressible flow in a driven cavity. The steady incompressible 2-D Navier-Stokes equations are solved numerically. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations. Driven cavity flow, numerical methods, steady incompressible flow, finite difference, Navier Stokes equations.

 

References

 

[1]
M. Aydin and R. T. Fenner, Boundary Element Analysis of Driven Cavity Flow for Low and Moderate Reynolds Numbers, International Journal for Numerical Methods in Fluids, 37 (2001), 45-64. 
 
[2]
A. S. Benjamin and V. E. Denny, On the Convergence of Numerical Solutions for 2-D Flows in a Cavity at Large Re, Journal of Computational Physics 33 (1979), 340-358. 
 
[3]
E. Brakkee, P. Wesseling and C. G. M. Kassels, Schwarz Domain Decomposition for the Incompressible Navier–Stokes Equations in General Co-ordinates, International Journal for Numerical Methods in Fluids 32, (2000) 141-173. 
 
[4]
O. Botella and R. Peyret, Benchmark Spectral Results on the Lid-Driven Cavity Flow, Computers and Fluids 27, (1998) 421-433. 
 
[5]
I. Demirdzic, Z. Lilek and M. Peric, Fluid Flow and Heat Transfer Test Problems for Non-orthogonal Grids: Bench-mark Solutions, International Journal for Numerical Methods in Fluids 15, (1992) 329-354. 
 
[6]
E. Erturk, T. C. Corke and C. Gokcol, Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers, International Journal for Numerical Methods in Fluids 48, (2005) 747-774. 
 
[7]
E. Erturk and C. Gokcol, Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers, International Journal for Numerical Methods in Fluids 50, (2006) 421-436. 
 
[8]
E. Erturk, O. M. Haddad and T. C. Corke, Numerical Solutions of Laminar Incompressible Flow Past Parabolic Bodies at Angles of Attack, AIAA Journal 42, (2004) 2254-2265. 
 
[9]
M. M. Gupta, R. P. Manohar and B. Noble, Nature of Viscous Flows Near Sharp Corners, Computers and Fluids 9, (1981) 379-388. 
 
[10]
H. Huang and B. R. Wetton, Discrete Compatibility in Finite Difference Methods for Viscous Incompressible Fluid Flow, Journal of Computational Physics 126, (1996) 468-478. 
 
[11]
H. Lai and Y. Y. Yan, The Effect of Choosing Dependent Variables and Cellface Velocities on Convergence of the SIMPLE Algorithm Using Non-Orthogonal Grids, International Journal of Numerical Methods for Heat & Fluid Flow 11, (2001) 524-546. 
 
[12]
M. Li, T. Tang and B. Fornberg, A Compact Forth-Order Finite Difference Scheme for the Steady Incompressible Navier-Stokes Equations International Journal for Numerical Methods in Fluids 20, (1995) 1137-1151. 
 
[13]
M. Louaked, L. Hanich and K. D. Nguyen, An Efficient Finite Difference Technique For Computing Incompressible Viscous Flows, International Journal for Numerical Methods in Fluids 25, (1997) 1057-1082. 
 
[14]
H. K. Moffatt, Viscous and resistive eddies near a sharp corner, Journal of Fluid Mechanics 18, (1963) 1-18. 
 
[15]
M. Napolitano, G. Pascazio and L. Quartapelle, A Review of Vorticity Conditions in the Numerical Solution of the z-y Equations, Computers and Fluids 28, (1999) 139-185. 
 
[16]
H. Nishida and N. Satofuka, Higher-Order Solutions of Square Driven Cavity Flow Using a Variable-Order Multi-Grid Method, International Journal for Numerical Methods in Fluids 34, (1992) 637-653. 
 
[17]
C. W. Oosterlee, P. Wesseling, A. Segal and E. Brakkee, Benchmark Solutions for the Incompressible Navier-Stokes Equations in General Co-ordinates on Staggered Grids, International Journal for Numerical Methods in Fluids 17, (1993) 301-321. 
 
[18]
J. R. Pacheco and R. E. Peck, Nonstaggered Boundary-Fitted Coordinate Method For Free Surface Flows, Numerical Heat Transfer Part B 37, (2000) 267-291. 
 
[19]
M. Peric, Analysis of Pressure-Velocity Coupling on Non-orthogonal Grids, Numerical Heat Transfer Part B 17, (1990) 63-82. 
 
[20]
D. G. Roychowdhury, S. K. Das and T. Sundararajan, An Efficient Solution Method for Incompressible N-S Equations Using Non-Orthogonal Collocated Grid, International Journal for Numerical Methods in Engineering 45, (1999) 741-763. 
 
[21]
R. Schreiber and H. B. Keller, Driven Cavity Flows by Efficient Numerical Techniques, Journal of Computational Physics 49, (1983) 310-333. 
 
[22]
A. Shklyar and A. Arbel, Numerical Method for Calculation of the Incompressible Flow in General Curvilinear Co-ordinates With Double Staggered Grid, International Journal for Numerical Methods in Fluids 41, (2003) 1273-1294. 
 
[23]
W. F. Spotz, Accuracy and Performance of Numerical Wall Boundary Conditions for Steady 2D Incompressible Streamfunction Vorticity, International Journal for Numerical Methods in Fluids 28, (1998) 737-757. 
 
[24]
T. Stortkuhl, C. Zenger and S. Zimmer, An Asymptotic Solution for the Singularity at the Angular Point of the Lid Driven Cavity, International Journal of Numerical Methods for Heat & Fluid Flow 4, (1994) 47-59. 
 
[25]
R. Teigland and I. K. Eliassen, A Multiblock/Multilevel Mesh Refinement Procedure for CFD Computations, International Journal for Numerical Methods in Fluids 36, (2001) 519-538. 
 
[26]
A. Thom, The Flow Past Circular Cylinders at Low Speed, Proceedings of the Royal Society of London Series A 141, (1933) 651-669. 
 
[27]
P. G. Tucker and Z. Pan, A Cartesian Cut Cell Method for Incompressible Viscous Flow, Applied Mathematical Modelling 24, (2000) 591-606. 
 
[28]
Y. Wang and S. Komori, On the Improvement of the SIMPLE-Like method for Flows with Complex Geometry, Heat and Mass Transfer 36, (2000) 71-78. 
 
[29]
E. Weinan and L. Jian-Guo, Vorticity Boundary Condition and Related Issues for Finite Difference Schemes, Journal of Computational Physics 124, (1996) 368-382. 
 
[30]
N. G. Wright and P. H. Gaskell, An Efficient Multigrid Approach to Solving Highly Recirculating Flows, Computers and Fluids 24, (1995) 63-79. 
 
[31]
H. Xu and C. Zhang, Study Of The Effect Of The Non-Orthogonality For Non-Staggered Grids—The Results, International Journal for Numerical Methods in Fluids 29, (1999) 625-644. 
 
[32]
H. Xu and C. Zhang, Numerical Calculation of Laminar Flows Using Contravariant Velocity Fluxes, Computers and Fluids 29, (2000) 149-177.