Backward Facing Step Flow Part I: High Reynolds Number Solutions

Fluid flows in channels with flow separation and reattachment of the boundary layers are encountered in many flow problems. Typical examples are the flows in heat exchangers and ducts. Among this type of flow problems, a backward-facing step can be regarded as having the simplest geometry while retaining rich flow physics manifested by flow separation, flow reattachment and multiple recirculating bubbles in the channel depending on the Reynolds number and the geometrical parameters such as the step height and the channel height.

In the following web pages, you will find detailed information about the backward-facing step flow and tabulated datas and figures and more.

In the following study, E. Erturk have analysed the nature of the cavity flow at high Reynolds numbers. In the literature, while some studies claims that the flow in a driven cavity is not steady at a Reynolds number and present unsteady solutions, some other studies present steady solutions at even higher Reynolds numbers. There is a controversy on whether the flow in a cavity is steady or not at high Reynolds numbers. E. Erturk have analysed the cavity flow problem in terms of physical, mathematical and also numerical aspects with a brief literature survey on experimental, analytical and also numerical studies on cavity flow and then presented very fine grid numerical solutions of driven cavity flow at high Reynolds numbers obtained by solving the governing equations with Successive Over Relaxation (SOR) method.

Visit STUDY 2 page :

E. Erturk, "Discussions on Driven Cavity Flow and Steady Solutions at High Reynolds Numbers", Submitted

In the literature, there are not much benchmark problems with non-orthogonal grids for numerical methods to compare solutions with each other. The skewed cavity problem can be a perfect test case for body fitted non-orthogonal grids and yet it is as simple as the cavity flow in terms of programming point of view. The test case is similar to driven cavity flow but the geometry is a parallelogram rather than a square. In this test case, the skewness of the geometry can be easily changed by changing the skew angle (a). In the following study Erturk and Dursun have presented thenumerical solutions of the driven skewed cavity flow problem for skew angles 15° £ a £ 165°, with body fitted non-orthogonal skewed grid mesh of (513×513). By changing the skew angle to extreme values it is possible to test numerical methods for grid skewness in terms of stability, efficiency and accuracy. The numerical solutions of the flow in a skewed cavity will be presented for Reynolds number of 100 and 1000 for a wide variety of skew angles ranging between a=15° and a=165° with Da=15° increments.

Visit STUDY 5 page :

E. Erturk and B. Dursun, "Numerical Solutions of 2-D Steady Incompressible Flow in a Driven Skewed Cavity", ZAMM - Journal of Applied Mathematics and Mechanics 2007, Vol 87, pp 377-392